Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.773
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567815

RESUMO

In cattle, lateral asymmetry affects ovarian function and embryonic sex, but the underlying molecular mechanisms remain unknown. The plasma metabolome of recipients serves to predict pregnancy after embryo transfer (ET). Thus, the aim of this study was to investigate whether the plasma metabolome exhibits distinct lateral patterns according to the sex of the fetus carried by the recipient and the active ovary side (AOS), i.e., the right ovary (RO) or the left ovary (LO). We analyzed the plasma of synchronized recipients by 1H+NMR on day 0 (estrus, n = 366) and day 7 (hours prior to ET; n = 367). Thereafter, a subset of samples from recipients that calved female (n = 50) or male (n = 69) was used to test the effects of embryonic sex and laterality on pregnancy establishment. Within the RO, the sex ratio of pregnancies carried was biased toward males. Significant differences (P < 0.05) in metabolite levels were evaluated based on the day of blood sample collection (days 0, 7 and day 7/day 0 ratio) using mixed generalized models for metabolite concentration. The most striking differences in metabolite concentrations were associated with the RO, both obtained by multivariate (OPLS-DA) and univariate (mixed generalized) analyses, mainly with metabolites measured on day 0. The metabolites consistently identified through the OPLS-DA with a higher variable importance in projection score, which allowed for discrimination between male fetus- and female fetus-carrying recipients, were hippuric acid, l-phenylalanine, and propionic acid. The concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male fetuses were carried, in particular when the RO acted as AOS. No pathways were significantly regulated according to the AOS. In contrast, six pathways were found enriched for calf sex in the day 0 dataset, three for day 7, and nine for day 7/day 0 ratio. However, when the AOS was the right, 20 pathways were regulated on day 0, 8 on day 7, and 13 within the day 7/day 0 ratio, most of which were related to amino acid metabolism, with phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism pathways being identified throughout. Our study shows that certain metabolites in the recipient plasma are influenced by the AOS and can predict the likelihood of carrying male or female embryos to term, suggesting that maternal metabolism prior to or at the time of ET could favor the implantation and/or development of either male or female embryos.


This study explored how the active ovary side (AOS, i.e., left or right) and the sex of the calf carried by the recipient relate to the plasma metabolome in blood. For this purpose, we analyzed blood samples from heifers at two specific times: the day of the estrus and the day of the embryo transfer. We found significant differences in the sex ratio of pregnancies carried in the right ovary, and in the levels of certain metabolites depending on whether the active ovary was on the right or left and whether the calf was male or female. As examples, the concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male calves were carried, in particular when the right ovary was active. Interestingly, the calf sex also influenced certain metabolic pathways, especially in the right AOS, several of them related to amino acid metabolism. However, no significant metabolic pathway changes were observed based solely on which ovary was active. Overall, the study suggests that the metabolism of the recipient, influenced by the AOS, might play a role in the successful implantation and development of embryos of a certain sex. This insight could potentially help to predict and improve pregnancy outcomes in cattle through embryo transfer techniques.


Assuntos
Transferência Embrionária , Hipuratos , Ovário , Propionatos , Masculino , Gravidez , Bovinos , Feminino , Animais , Taxa de Gravidez , Transferência Embrionária/veterinária , Metaboloma , Fenilalanina
2.
Am J Bot ; 111(4): e16308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581167

RESUMO

PREMISE: Better understanding of the relationship between plant specialized metabolism and traditional medicine has the potential to aid in bioprospecting and untangling of cross-cultural use patterns. However, given the limited information available for metabolites in most plant species, understanding medicinal use-metabolite relationships can be difficult. The order Caryophyllales has a unique pattern of lineages of tyrosine- or phenylalanine-dominated specialized metabolism, represented by mutually exclusive anthocyanin and betalain pigments, making Caryophyllales a compelling system to explore the relationship between medicine and metabolites by using pigment as a proxy for dominant metabolism. METHODS: We compiled a list of medicinal species in select tyrosine- or phenylalanine-dominant families of Caryophyllales (Nepenthaceae, Polygonaceae, Simmondsiaceae, Microteaceae, Caryophyllaceae, Amaranthaceae, Limeaceae, Molluginaceae, Portulacaceae, Cactaceae, and Nyctaginaceae) by searching scientific literature until no new uses were recovered. We then tested for phylogenetic clustering of uses using a "hot nodes" approach. To test potential non-metabolite drivers of medicinal use, like how often humans encounter a species (apparency), we repeated the analysis using only North American species across the entire order and performed phylogenetic generalized least squares regression (PGLS) with occurrence data from the Global Biodiversity Information Facility (GBIF). RESULTS: We hypothesized families with tyrosine-enriched metabolism would show clustering of different types of medicinal use compared to phenylalanine-enriched metabolism. Instead, wide-ranging, apparent clades in Polygonaceae and Amaranthaceae are overrepresented across nearly all types of medicinal use. CONCLUSIONS: Our results suggest that apparency is a better predictor of medicinal use than metabolism, although metabolism type may still be a contributing factor.


Assuntos
Caryophyllales , Plantas Medicinais , Caryophyllales/metabolismo , Caryophyllales/genética , Plantas Medicinais/metabolismo , Medicina Tradicional , Filogenia , Tirosina/metabolismo , Betalaínas/metabolismo , Fenilalanina/metabolismo
3.
Am J Clin Nutr ; 119(4): 908-916, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569786

RESUMO

BACKGROUND: Phenylketonuria (PKU) is an autosomal recessive metabolic disorder characterized by increased phenylalanine (Phe) concentrations in the blood and brain. Despite wide agreement on treatment during childhood, recommendations for adults are still controversial. OBJECTIVE: To assess the impact of a 4-week increase in Phe intake (simulating normal dietary Phe consumption) on cognition, mood, and depression in early-treated adults with PKU in a double-blind, randomized controlled trial (RCT). METHODS: In a single-site crossover trial, 30 adult patients with classical PKU diagnosed at birth were recruited. All patients underwent a 4-week period of oral Phe administration (1500-3000 mg Phe/d) and a 4-week placebo period in a randomly assigned order with age, sex, and place of usual medical care as stratification factors. Analyses were based on the intention-to-treat (ITT) and per protocol (PP) approach to claim noninferiority (noninferiority margin -4%), with working memory accuracy as the primary endpoint and additional cognitive domains, mood, and depression as secondary endpoints. RESULTS: For the primary endpoint, a 4-week increase of Phe intake was noninferior to placebo with respect to working memory accuracy in both the ITT [point estimate 0.49; lower limit 95% confidence interval (CI): -1.99] and the PP analysis (point estimate -1.22; lower limit 95% CI: -2.60). Secondary outcomes (working memory reaction time, manual dexterity, mood, and depression) did not significantly differ between the Phe and placebo period, except for sustained attention (point estimate 31.0; lower limit 95% CI: 9.0). Adverse events were more frequent during the Phe than during the placebo period (95% CI: 1.03, 2.28, P = 0.037). CONCLUSIONS: In early-treated adult patients with PKU, a 4-week high Phe intake was noninferior to continuing Phe restriction regarding working memory accuracy, and secondary outcomes did not differ except for sustained attention. Longer-term RCTs are required to determine whether low Phe levels need to be maintained throughout different periods of adulthood. This trial was registered at the clinicaltrials.gov as NCT03788343.


Assuntos
Fenilcetonúrias , Adulto , Humanos , Encéfalo/metabolismo , Cognição , Dieta , Fenilalanina , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/metabolismo , Masculino , Feminino
4.
Chirality ; 36(4): e23665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570326

RESUMO

In this paper, the amino acid chiral ionic liquid (AACIL) was prepared with L-phenylalanine and imidazole. It was characterized by CD, FT-IR, 1H NMR, and 13C NMR spectrum. The chiral recognition sensor was constructed with AACIL and Cu(II), which exhibited different chiral visual responses (solubility or color difference) to the enantiomers of glutamine (Gln) and phenylalanine (Phe). The effects of solvent, pH, time, temperature, metal ions, and other amino acids on visual chiral recognition were optimized. The minimum concentrations of Gln and Phe for visual chiral recognition were 0.20 mg/ml and 0.28 mg/ml, respectively. The mechanism of chiral recognition was investigated by FT-IR, TEM, SEM, TG, XPS, and CD. The location of the host-guest inclusion or molecular placement has been conformationally searched based on Gaussian 09 software.


Assuntos
Aminoácidos , Líquidos Iônicos , Aminoácidos/química , Fenilalanina/química , Glutamina , Líquidos Iônicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
5.
Methods Enzymol ; 696: 341-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658087

RESUMO

The site-specific encoding of noncanonical amino acids allows for the introduction of rationalized chemistry into a target protein. Of the methods that enable this technology, evolved tRNA and synthetase pairs offer the potential for expanded protein production and purification. Such an approach combines the versatility of solid-phase peptide synthesis with the scalable features of recombinant protein production. We describe the large scale production and purification of eukaryotic proteins bearing fluorinated phenylalanine in mammalian suspension cell preparations. Downstream applications of this approach include scalable recombinant protein preparation for ligand binding assays with small molecules and ligands, protein structure determination, and protein stability assays.


Assuntos
Halogenação , Proteínas Recombinantes , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Animais , Humanos , Fenilalanina/química , Fenilalanina/isolamento & purificação , Fenilalanina/metabolismo , Técnicas de Cultura de Células/métodos , Células HEK293
6.
J Phys Chem Lett ; 15(16): 4468-4476, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38631022

RESUMO

The underlying mechanism and intermediate formation in the self-assembly of aromatic amino acids, peptides, and proteins remain elusive despite numerous reports. We, for the first time, report that one can stabilize the intermediates by tuning the metal ion-amino acid interaction. Microscopic and spectroscopic investigations of the self-assembly of carboxybenzyl (Z)-protected phenylalanine (ZF) reveal that the bivalent metal ions eventually lead to the formation of fibrillar networks similar to blank ZF whereas the trivalent ions develop vesicle-like intermediates that do not undergo fibrillation for a prolonged time. The time-lapse measurement of surface charge reveals that the surface charge of blank ZF and in the presence of bivalent metal ions changes from a negative value to zero, implying unstable intermediates leading to the fibril network. Strikingly, a prominent charge inversion from an initial negative value to a positive value in the presence of trivalent metal ions imparts unusual stability to the metastable intermediates.


Assuntos
Fenilalanina , Fenilalanina/química , Propriedades de Superfície , Íons/química , Metais/química
7.
J Biomed Opt ; 29(Suppl 2): S22703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584965

RESUMO

Significance: Raman spectroscopy has been used as a powerful tool for chemical analysis, enabling the noninvasive acquisition of molecular fingerprints from various samples. Raman spectroscopy has proven to be valuable in numerous fields, including pharmaceutical, materials science, and biomedicine. Active research and development efforts are currently underway to bring this analytical instrument into the field, enabling in situ Raman measurements for a wider range of applications. Dispersive Raman spectroscopy using a fixed, narrowband source is a common method for acquiring Raman spectra. However, dispersive Raman spectroscopy requires a bulky spectrometer, which limits its field applicability. Therefore, there has been a tremendous need to develop a portable and sensitive Raman system. Aim: We developed a compact swept-source Raman (SS-Raman) spectroscopy system and proposed a signal processing method to mitigate hardware limitations. We demonstrated the capabilities of the SS-Raman spectroscopy by acquiring Raman spectra from both chemical and biological samples. These spectra were then compared with Raman spectra obtained using a conventional dispersive Raman spectroscopy system. Approach: The SS-Raman spectroscopy system used a wavelength-swept source laser (822 to 842 nm), a bandpass filter with a bandwidth of 1.5 nm, and a low-noise silicon photoreceiver. Raman spectra were acquired from various chemical samples, including phenylalanine, hydroxyapatite, glucose, and acetaminophen. A comparative analysis with the conventional dispersive Raman spectroscopy was conducted by calculating the correlation coefficients between the spectra from the SS-Raman spectroscopy and those from the conventional system. Furthermore, Raman mapping was obtained from cross-sections of swine tissue, demonstrating the applicability of the SS-Raman spectroscopy in biological samples. Results: We developed a compact SS-Raman system and validated its performance by acquiring Raman spectra from both chemical and biological materials. Our straightforward signal processing method enhanced the quality of the Raman spectra without incurring high costs. Raman spectra in the range of 900 to 1200 cm-1 were observed for phenylalanine, hydroxyapatite, glucose, and acetaminophen. The results were validated with correlation coefficients of 0.88, 0.84, 0.87, and 0.73, respectively, compared with those obtained from dispersive Raman spectroscopy. Furthermore, we performed scans across the cross-section of swine tissue to generate a biological tissue mapping plot, providing information about the composition of swine tissue. Conclusions: We demonstrate the capabilities of the proposed compact SS-Raman spectroscopy system by obtaining Raman spectra of chemical and biological materials, utilizing straightforward signal processing. We anticipate that the SS-Raman spectroscopy will be utilized in various fields, including biomedical and chemical applications.


Assuntos
Acetaminofen , Análise Espectral Raman , Suínos , Animais , Análise Espectral Raman/métodos , Glucose , Fenilalanina , Hidroxiapatitas
8.
J Nutr ; 154(4): 1333-1346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582698

RESUMO

BACKGROUND: The increase in circulating insulin levels is associated with the onset of type 2 diabetes (T2D), and the levels of branched-chain amino acids and aromatic amino acids (AAAs) are altered in T2D, but whether AAAs play a role in insulin secretion and signaling remains unclear. OBJECTIVES: This study aimed to investigate the effects of different AAAs on pancreatic function and on the use of insulin in finishing pigs. METHODS: A total of 18 healthy finishing pigs (Large White) with average body weight of 100 ± 1.15 kg were randomly allocated to 3 dietary treatments: Con, a normal diet supplemented with 0.68% alanine; Phe, a normal diet supplemented with 1.26% phenylalanine; and Trp, a normal diet supplemented with 0.78% tryptophan. The 3 diets were isonitrogenous. There were 6 replicates in each group. RESULTS: Herein, we investigated the effects of tryptophan and phenylalanine on pancreatic function and the use of insulin in finishing pigs and found that the addition of tryptophan and phenylalanine aggravated pancreatic fat deposition, increased the relative content of saturated fatty acids, especially palmitate (C16:0) and stearate (C18:0), and the resulting lipid toxicity disrupted pancreatic secretory function. We also found that tryptophan and phenylalanine inhibited the growth and secretion of ß-cells, downregulated the gene expression of the PI3K/Akt pathway in the pancreas and liver, and reduced glucose utilization in the liver. CONCLUSIONS: Using fattening pigs as a model, multiorgan combined analysis of the insulin-secreting organ pancreas and the main insulin-acting organ liver, excessive intake of tryptophan and phenylalanine will aggravate pancreatic damage leading to glucose metabolism disorders, providing new evidence for the occurrence and development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Triptofano , Suínos , Animais , Fenilalanina , Fosfatidilinositol 3-Quinases , Dieta , Insulina , Ração Animal/análise
9.
Wei Sheng Yan Jiu ; 53(2): 282-287, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604965

RESUMO

OBJECTIVE: To evaluate the changes in protein requirements of the elderly during the past five years. METHODS: Based on the previous study of protein requirements of 14 elderly in 2017, 4 of these elderly(70-80 y) were included as study participants and protein requirements were re-evaluated using the indicator amino acid oxidation method. There were seven protein levels: 0.1, 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8 g/(kg·d). Maintenance diets were given for the first two days of each protein level. A stable isotope study was conducted on the day 3, using L-~(13)C-phenylalanine as an indicator on the basis of an amino acid rationed diet, which was orally ingested into the body along with the amino acid rationed diet, and breath and urine samples were collected when the metabolism of L-~(13)C-phenylalanine reached steady state in the body. By measuring the kinetic parameters of labeled amino acids in the samples, a nonlinear mixed-effects model was constructed for the protein intake to be tested and the oxidation rate of labeled amino acids. The mean protein requirement of the study population was determined by the protein intake corresponding to the inflection point of the curve. RESULTS: Based on the production rate of ~(13)CO_2 in exhaled breath of four elderly people at different protein levels, the mean protein requirement was 1.05(95%CI 0.51-1.60) g/(kg·d). The protein recommended nutrient intake was 1.31(95%CI 0.64-2.00) g/(kg·d) was estimated by applying the coefficient of variation of the mean protein requirement to derive the recommended nutrient intake. CONCLUSION: Protein requirements in the elderly have increased over a five-year period and sarcopenia may be the main cause of increased protein requirements.


Assuntos
Aminoácidos , Proteínas na Dieta , Humanos , Idoso , Isótopos de Carbono , Oxirredução , Fenilalanina/química , Fenilalanina/metabolismo , Necessidades Nutricionais
10.
J Med Virol ; 96(4): e29594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576317

RESUMO

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.


Assuntos
Fármacos Anti-HIV , Soropositividade para HIV , Humanos , Capsídeo/metabolismo , Fenilalanina/farmacologia , Fenilalanina/metabolismo , Simulação de Acoplamento Molecular , Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/metabolismo , Antirretrovirais
11.
PLoS One ; 19(3): e0299268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427676

RESUMO

Reducing enteric methane (one greenhouse gas) emissions from beef cattle not only can be beneficial in reducing global warming, but also improve efficiency of nutrient utilization in the production system. However, direct measurement of enteric methane emissions on individual cattle is difficult and expensive. The objective of this study was to detect plasma metabolites that are associated with enteric methane emissions in beef cattle. Average enteric methane emissions (CH4) per day (AVG_DAILYCH4) for each individual cattle were measured using the GreenFeed emission monitoring (GEM) unit system, and beef cattle with divergent AVG_DAILYCH4 from Angus (n = 10 for the low CH4 group and 9 for the high CH4 group), Charolais (n = 10 for low and 10 for = high), and Kinsella Composite (n = 10 for low and 10 for high) populations were used for plasma metabolite quantification and metabolite-CH4 association analyses. Blood samples of these cattle were collected near the end of the GEM system tests and a high performance four-channel chemical isotope labeling (CIL) liquid chromatography (LC) mass spectrometer (MS) method was applied to identify and quantify concentrations of metabolites. The four-channel CIL LC-MS method detected 4235 metabolites, of which 1105 were found to be significantly associated with AVG_DAILYCH4 by a t-test, while 1305 were significantly associated with AVG_DAILYCH4 by a regression analysis at p<0.05. Both the results of the t-test and regression analysis revealed that metabolites that were associated with enteric methane emissions in beef cattle were largely breed-specific whereas 4.29% to 6.39% CH4 associated metabolites were common across the three breed populations and 11.07% to 19.08% were common between two breed populations. Pathway analyses of the CH4 associated metabolites identified top enriched molecular processes for each breed population, including arginine and proline metabolism, arginine biosynthesis, butanoate metabolism, and glutathione metabolism for Angus; beta-alanine metabolism, pyruvate metabolism, glycolysis / gluconeogenesis, and citrate cycle (TCA cycle) for Charolais; phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, and arginine and proline metabolism for Kinsella Composite. The detected CH4 associated metabolites and enriched molecular processes will help understand biological mechanisms of enteric methane emissions in beef cattle. The detected CH4 associated plasma metabolites will also provide valuable resources to further characterize the metabolites and verify their utility as biomarkers for selection of cattle with reduced methane emissions.


Assuntos
Dieta , Metano , Bovinos , Animais , Dieta/veterinária , Metano/metabolismo , Cromatografia Líquida , 60705 , Espectrometria de Massas em Tandem , Arginina , Fenilalanina , Prolina , Ração Animal/análise
12.
Psychopharmacol Bull ; 54(1): 65-86, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38449471

RESUMO

Purpose of Review: This is a comprehensive review of the literature regarding the use of Solriamfetol for excessive daytime sleepiness. It covers the background and current therapeutic approaches to treating excessive daytime sleepiness, the management of common comorbidities, and the existing evidence investigating the use of Solriamfetol for this purpose. Recent Findings: Excessive daytime sleepiness leads to worse quality of life, a medical sequela and significant economic cost. There are multiple phenotypes of excessive daytime sleepiness depending on the comorbidity making treatment challenging. Due to the complexity of etiology there is not a cure for this ailment. Solriamfetol is a norepinephrine/dopamine dual reuptake antagonist that can be used to manage daytime sleepiness. Solriamfetol was first approved by the FDA in 2018 for use in excessive daytime sleepiness associated with obstructive sleep apnea and narcolepsy. Ongoing literature has proved this drug to be a safe and effective alternative pharmacotherapy. Summary: Recent epidemiological data estimate up to one-third of the general adult population suffers from excessive daytime sleepiness. There is no cure to daytime somnolence and current pharmacotherapeutic regimens have worrisome side effect profiles. Solriamfetol is a new class of drug that offers a safe and effective alternative option for clinical providers treating excessive daytime sleepiness.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Fenilalanina/análogos & derivados , Qualidade de Vida , Adulto , Humanos , Carbamatos/uso terapêutico , Antagonistas de Dopamina , Distúrbios do Sono por Sonolência Excessiva/tratamento farmacológico
13.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474766

RESUMO

Supplementation is crucial for improving performance and health in phenylketonuria (PKU) patients, who face dietary challenges. Proteins are vital for athletes, supporting muscle growth, minimizing catabolism, and aiding muscle repair and glycogen replenishment post-exercise. However, PKU individuals must limit phenylalanine (Phe) intake, requiring supplementation with Phe-free amino acids or glycomacropeptides. Tailored to meet nutritional needs, these substitutes lack Phe but fulfill protein requirements. Due to limited supplement availability, athletes with PKU may need higher protein intake. Various factors affect tolerated Phe levels, including supplement quantity and age. Adhering to supplement regimens optimizes performance and addresses PKU challenges. Strategically-timed protein substitutes can safely enhance muscle synthesis and sports performance. Individualized intake is essential for optimal outcomes, recognizing proteins' multifaceted role. Here, we explore protein substitute supplementation in PKU patients within the context of physical activity, considering limited evidence.


Assuntos
Fenilalanina , Fenilcetonúrias , Humanos , Fenilalanina/metabolismo , Dieta , Suplementos Nutricionais , Exercício Físico , Fenilcetonúrias/metabolismo
14.
Nucleic Acids Res ; 52(7): 3938-3949, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477328

RESUMO

In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.


Assuntos
Anticódon , Biossíntese de Proteínas , RNA Catalítico , Aminoacil-RNA de Transferência , RNA Catalítico/metabolismo , RNA Catalítico/genética , Anticódon/genética , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/genética , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacilação de RNA de Transferência , Aminoacilação , Elongação Traducional da Cadeia Peptídica
15.
Appl Environ Microbiol ; 90(4): e0204323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38547470

RESUMO

Pasteurella multocida is a zoonotic conditional pathogen that infects multiple livestock species, causing substantial economic losses in the animal husbandry industry. An efficient markerless method for gene manipulation may facilitate the investigations of P. multocida gene function and pathogenesis of P. multocida. Herein, a temperature-sensitive shuttle vector was constructed using lacZ as a selection marker, and markerless glgB, opa, and hyaE mutants of P. multocida were subsequently constructed through blue-white colony screening. The screening efficiency of markerless deletion strains was improved by the lacZ system, and the method could be used for multiple gene deletions. However, the fur mutant was unavailable via this method. Therefore, we constructed a pheSm screening system based on mutated phenylalanine tRNA synthetase as a counterselection marker to achieve fur deletion mutant. The transformed strain was sensitive to 20 mM p-chloro-phenylalanine, demonstrating the feasibility of pheSm as a counter-selective marker. The pheSm system was used for markerless deletions of glgB, opa, and hyaE as well as fur that could not be screened by the lacZ system. A comparison of screening efficiencies of the system showed that the pheSm counterselection system was more efficient than the lacZ system and broadly applicable for mutant screening. The methods developed herein may provide valuable tools for genetic manipulation of P. multocida.IMPORTANCEPasteurella multocida is a highly contagious zoonotic pathogen. An understanding of its underlying pathogenic mechanisms is of considerable importance and requires efficient species-specific genetic tools. Herein, we propose a screening system for P. multocida mutants using lacZ or pheSm screening markers. We evaluated the efficiencies of both systems, which were used to achieve markerless deletion of multiple genes. The results of this study support the use of lacZ or pheSm as counterselection markers to improve counterselection efficiency in P. multocida. This study provides an effective genetic tool for investigations of the virulence gene functions and pathogenic mechanisms of P. multocida.


Assuntos
Pasteurella multocida , Animais , Pasteurella multocida/genética , Óperon Lac , Vetores Genéticos , Fenilalanina
16.
Pharm Res ; 41(4): 687-698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519814

RESUMO

OBJECTIVE: To assess the pharmacokinetic profile, in-vivo toxicity, and efficacy of 9-Fluorenylmethoxycarbonyl-L-phenylalanine (Fmoc-F) as a potential antibacterial agent, with a focus on its suitability for clinical translation. METHODS: An RP-HPLC-based bio-analytical method was developed and qualified to quantify Fmoc-F levels in mouse plasma for pharmacokinetic analysis. Oral bioavailability was determined, and in-vivo toxicity was evaluated following intra-peritoneal administration. Efficacy was assessed by measuring the reduction in Staphylococcus aureus burden and survival rates in BALB/c mice. RESULTS: The RP-HPLC method is highly sensitive, detecting as low as 0.8 µg mL-1 (~ 2 µM) of Fmoc-F in blood plasma. This study revealed that Fmoc-F has an oral bioavailability of 65 ± 18% and suitable pharmacokinetic profile. Further, we showed that intra-peritoneal administration of Fmoc-F is well tolerated by BALB/c mice and Fmoc-F treatment (100 mg/kg, i.p.) significantly reduces Staphylococcus aureus burden from visceral organs in BALB/c mice but falls short in enhancing survival rates at higher bacterial loads. CONCLUSIONS: The study provides crucial insights into the pharmacokinetic and pharmacodynamic properties of Fmoc-F. The compound displayed favourable oral bioavailability and in-vivo tolerance. Its significant reduction of bacterial burden underscores its potential as a treatment for systemic infections. However, limited effectiveness for severe infections, short half-life, and inflammatory response at higher doses need to be addressed for its clinical application.


Assuntos
Antibacterianos , Fenilalanina , Animais , Camundongos , Fenilalanina/farmacologia , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão , Bactérias , Disponibilidade Biológica
17.
BMC Med Genomics ; 17(1): 76, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515136

RESUMO

BACKGROUND: PKU is an autosomal recessive hereditary inborn error of metabolism caused by a lack of phenylalanine hydroxylase enzyme activity. Pegvaliase (PALYNZIQ®) treatment has been approved to reduce blood Phe concentrations in adult phenylketonuria patients with uncontrolled blood Phe concentrations greater than 600 micromol/L on current management. However, data regarding individuals under the age of 16 is still unavailable. CASE REPORT: We report a 12-year-old Saudi girl who underwent pegvaliase therapy and was closely monitored for one year. Remarkably, a positive therapeutic response became apparent six months after commencing pegvaliase treatment. Phenylalanine (Phe) levels showed significant improvement, stabilising within the < 5 to 14 µmol/L range on a regular diet without any restriction. At her current age of 12, the patient maintains an unrestricted dietary regimen, consuming a diverse selection of foods, including poultry, meat, and protein sources, all while consistently maintaining normal Phe levels with no change in mental status after treatment. The parents gave their written, informed consent in allowing the research study to be carried out and clinical data to be published. CONCLUSIONS: This report addresses the potential broader applications of Pegvaliase in children, as well as its safety and tolerability in this age group. However, larger sample sizes and robust methodologies are required to validate such findings.


Assuntos
Fenilalanina , Fenilcetonúrias , Criança , Feminino , Humanos , Alimentos , Fenilalanina/uso terapêutico , Fenilalanina Amônia-Liase/uso terapêutico , Fenilcetonúrias/tratamento farmacológico , Proteínas Recombinantes
18.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542680

RESUMO

Food neophobia (FN), the fear of sampling new foods, can have a significant impact on children's eating habits. Children with phenylketonuria (PKU), a hereditary condition that inhibits the body's capacity to metabolize phenylalanine, should take this attitude with caution. Patients with PKU must follow a rigorous phenylalanine (Phe)-restricted diet to avoid brain malfunction that can include intellectual disability, seizures, and behavioral difficulties. The novelty of our work stems from the fact that we explored the origins of this incorrect intake pattern, which exacerbates PKU patients' already fragile health. We conducted a cross-sectional study on 34 previously diagnosed phenylketonuria patients and a control group ranging in age from 7 months to 40 years, with a sex ratio of M/F 2:1. The Food Neophobia Scale (FNS) was used to determine neophobia. We used JASP (version 0.18.1) statistical analysis to examine the relationship between neophobia and PKU condition, age and nutritional status at the time of study, diet compliance, parental educational level, period from birth to PKU diagnosis, and environmental (rural/urban) provenience of PKU patients. According to the data, 61.76% of patients with PKU were neophobic, as were 70.57% of the control group. Food neophobia was associated with PKU patients' present age, the period from birth to PKU diagnosis, and parental educational level.


Assuntos
Fenilcetonúrias , Criança , Humanos , Estudos Transversais , Prevalência , Comportamento Alimentar , Fenilalanina
19.
Chem Commun (Camb) ; 60(28): 3802-3805, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38487891

RESUMO

An efficient functionalization of tyrosine residues in phenolic regions is achieved under metal-free conditions. The strategy involves the conversion of a tyrosine residue to 4-amino phenylalanine or 4-amino-3-methoxy phenylalanine in short peptides through a controlled oxidative dearomatization. This transformation is achieved in one pot with good yields and excellent regioselectivity. Consequently, the self-assembly of the peptide compounds has been studied at the nanoscopic level before and after functionalization. The results suggest that the peptide derivatives comprising amide groups promote intermolecular H-bonding interactions and the difference in -OH and -NH2 functional groups is found to be responsible for the morphological changes. Morphological transitions from 1D nanowires to 2D nanosheets were observed during functional group modification.


Assuntos
Peptídeos , Tirosina , Tirosina/química , Peptídeos/química , Fenilalanina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...